A lattice point problem on the regular tree
نویسندگان
چکیده
منابع مشابه
Alternating Regular Tree Grammars in the Framework of Lattice-Valued Logic
In this paper, two different ways of introducing alternation for lattice-valued (referred to as {L}valued) regular tree grammars and {L}valued top-down tree automata are compared. One is the way which defines the alternating regular tree grammar, i.e., alternation is governed by the non-terminals of the grammar and the other is the way which combines state with alternation. The first way is ta...
متن کاملTowards a Converse for the Nearest Lattice Point Problem
We consider the problem of distributed computation of the nearest lattice point for a two dimensional lattice. An interactive model of communication is considered. The problem is to bound the communication complexity of the search for a nearest lattice point. Upper bounds have been developed in two recent works [3], [16]. Here we prove the optimality of a particular step in the derivation of th...
متن کاملComparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice
A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...
متن کاملTree Regular Model Checking for Lattice-Based Automata
Tree Regular Model Checking (TRMC) is the name of a family of techniques for analyzing infinite-state systems in which states are represented by terms, and sets of states by Tree Automata (TA). The central problem in TRMC is to decide whether a set of bad states is reachable. The problem of computing a TA representing (an overapproximation of) the set of reachable states is undecidable, but eff...
متن کاملSparse additive regression on a regular lattice
We consider estimation in a sparse additive regression model with the design points on a regular lattice. We establish the minimax convergence rates over Sobolev classes and propose a Fourier-based rate optimal estimator which is adaptive to the unknown sparsity and smoothness of the response function. The estimator is derived within a Bayesian formalism but can be naturally viewed as a penaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2011
ISSN: 0012-365X
DOI: 10.1016/j.disc.2010.10.019